Bernardes et al concluded that CBCT provides enhanced and accurate information for the diagnosis of root fractures, thereby constituting an excellent alternative for diagnosis in the dental practice. Hassan et al found CBCT better than periapical radiographs in detecting vertical root fractures. Although one can’t predictably demonstrate incomplete root fractures on CBCT, I have seen some rather dramatic cases.

Fig 5 shows a periapical image of an upper cusp with a lateral bony lesion mid root. Lateral periodontal cyst, lateral canal, non-healing ends, and fractured root were included in my differential diagnosis. CBCT (Fig 4) clearly shows a fractured root was the cause of the lesion.

Even if you can’t see the fracture on CBCT, you can often see the amount and location of bone loss caused by them. Fig 5 shows a PA that is inconclusive. Fig 6 shows bone loss on the second molar consistent with vertical root fracture. (arrow)

Internal or external resorption

Fortunately, resorption is much rarer that fractures; it can be no less frustrating to demonstrate the location and extent of the defect on conventional two
dimensional periapical X-rays, CBCT makes this a breeze. Carol Estrella, et al (6) concluded that: "CBCT seems to be useful in the evaluation of IRR (inflammatory root resorption) and its diagnostic performance was better than that of periapical radiography."

Fig 9 shows a PA with suspected external inflammatory root resorption on the mesial of the second molar. Figs 10 and 11 show the location and extent of the defect much more precisely on CBCT. One can even measure how close to the pulp it gets!

Difficult anatomy (upper molars especially), dens-in-dente, severe curves, etc.

Here is another case where the anatomy hid the lesion. The PA was inconclusive (Fig 12). The patient was swollen and all the teeth quite tender. Instead of guessing, I could tell for certain which tooth was the cause of his pain and swelling with CBCT (see Fig 15).

Maxillary sinus involvement

The patient in Figs 12 and 13 is an MD radiologist who was diagnosed by a fellow radiologist with a sinusitis. Unfortunately they missed that an infected upper sinus, takes the guess work out of neuralgia and you get a normal 2D image or an apex locator. Figure 24 shows I measured accurately on CBCT to guide him in this case.

Calculated canals

Location and existence of calcified canals are easier visualised on 3D CBCT than on 2D periapical radiographs.

Locate extra canals, calcified canals, MB2 MB3

Do you need to chase the MB2 canal until you perforate or does it join the MB1 just a couple of mm beyond where you are searching? Preoperative CBCT tells you that for sure. Here is a case (see Fig 18,19,20) with three canals in the mesial root of a lower second molar. Not common, but you know they are probably there. I found it with a scope and didn’t have a pre treatment CBCT but it looks cool on the report to the referring doctor.

Facial pain cases to rule out odontogenic etiology

It makes you more confident in determining tooth and canal length than an intra-treatment 2D image or an apex locator. Figure 24 shows I measured accurately on CBCT without using trial length PA or apex locator.

Endo-perio cases

CBCT is very useful in determining the extent and location of periodontal bone loss. Faehrmann et al (6) showed that only one out of 14 furcation defects were visible on periapical X-rays where all 14 were visible on CBCT. How much bone is lost, does the endo lesion communicate with the peri defect? Here is a case of an upper bicuspit (Fig 21) with extensive periodontal bone loss to the apex. The pulp remained vital to cold tests.

Implant planning and placement

This is a whole presentation in itself. Hans-Joachim Nickenig et al (5) concluded that CBCT guided implant placement is “significantly more accurate than free-hand insertion”. If you are placing implants, it is much easier to treatment plan and place them with a guide generated by CBCT than to just “eye ball” it. Even basic software allows measurement of bone, tracing the nerve and virtual placement of implants (Fig 22).

Here is a case (Fig 25) from a well-respected oral surgeon who does a lot of implants and probably wishes he had taken a CBCT to guide him in this case.

Measure canal length

In most cases, my CBCT is more accurate in determining tooth and canal length than a intra-treatment 2D image or an apex locator. Figure 24 shows I measured accurately on CBCT without using trial length PA or apex locator.

Intra-operative to find canals

It is easy to demonstrate with two-dimensional if you are off to the mesial or distal on a calcified canal but what if you don’t know if the canal is to the lingual of buccal of where you are searching? Three-dimensional CBCT shows that precisely and saves time and anxiety.

Implant placement guidance

Using a CBCT generated surgical guide certainly helps avoid misplacing implants and makes the whole process much more predictable.

Post-treatment evaluation for healing

Several articles describe how useful CBCT is for recall to determine if lesions are healing or not.

Conclusions

Can we practice endodontics without CBCT? Yes, we did for years, but then some of us used to work without microscopes, digital x-rays, and apex locators. Why not have the best information available to make your diagnosis and treatment plan? The more you know about the patient’s anatomy and the shape and number of roots and canals in those roots, the better you will be to diagnose and treat their dental disease. We live and treat patients in a 3D world. Why not use 3D CBCT to better visualise anatomy and pathology?

About the author

Dr Jones has been in private practice limited to endodontics in the greater Kansas City area for 51 years. He received his B.S. in Natural Sciences with a University of Missouri, Kansas City School of Dentistry. He is a member of Omicron Kappa Upsilon, and Pi Kappa Phi honorary societies. He is a member of the American Association of Endodontists, the American Dental Association, the Kansas Dental Association, the Fifth District Dental Society, the Chicago Dental Society, the Kansas City Dental Implant Study Club, the Dental Abstract Study Club, and the American Academy of Oral Maxillofacial Radiology. He is an associate professor in Endodontics at the University of Missouri-Kansas City School of Dentistry.
The fight against bacteria
Dr Michael Sultan discusses the importance of cleanliness in the field of Endodontics

Dentistry often involves a battle against bacteria – the invisible invaders that wreak havoc with our oral health, infiltrating into gums and teeth causing tenderness, pain and sensitivity. The basic premise of endodontic procedures is to remove inflamed and infected tissue from the tooth, to clean the root canal system and to seal the tooth back up again. In short, endodontics is all about infection control; one of the fundamental elements of good dentistry.

The rubber dam
It goes without saying that maintaining cleanliness throughout the endodontic procedure should be key to a successful outcome. Nevertheless, teeth are incredibly complex structures and it is impossible to get the tooth sufficiently clean for it to be considered completely sterile.

The endodontist needs to carry out everything within their powers to facilitate infection control to reduce the risk of failure. For this reason, placing a rubber dam during treatment is mandatory.

This thin square of latex rubber serves to isolate the tooth from its environment, in particular from bacteria in the oral cavity, permitting a clean, dry operative field and enabling the treatment of the appropriate tooth without contamination from blood or saliva. I actually find that most patients prefer to have a rubber dam in place as a protective barrier. Medico-legally, one of the first questions to be asked following a mishap is whether a rubber dam was used during the procedure, so this device not only protects the tooth and the patient but also the practitioner.

Single-use instruments
The roots of teeth contain very fine, narrow and tortuous channels, some of which can be easily missed or undetected. Despite continuing advances in dental technology, the equipment at the dentist’s disposal is hopelessly inadequate for the job it has been designed to do. Relying on a small, stainless steel file or even super flexible nickel titanium files to successfully clean, shape and decontaminate the nooks and crannies within the tooth is really quite unrealistic.

Nevertheless, they are vital for opening up the canals so that they are accessible to our chemicals for disinfection.

Surprisingly, despite the recommendations that files should be for single-use only, the sales of such instruments for endodontics have actually fallen over the years, suggesting that some practitioners are reusing the same instrument on more than one patient. Aside from the obvious risks this poses to patients’ health and cross infection control, this also contravenes Department of Health legislation which states: “Dentists should ensure that Endodontic reamers and files are treated as single use in order to reduce the risk of prion transmission in dentistry”.

If we are to protect the health of our patients and their teeth, reusing single use items is simply not an option.

Chemical options
Most endodontists use chemicals to achieve the necessary disinfection. The fight against bacteria – the invisible invaders that wreak havoc with our oral health, infiltrating into gums and teeth causing tenderness, pain and sensitivity. The basic premise of endodontic procedures is to remove inflamed and infected tissue from the tooth, to clean the root canal system and to seal the tooth back up again. In short, endodontics is all about infection control; one of the fundamental elements of good dentistry.

The rubber dam
It goes without saying that maintaining cleanliness throughout the endodontic procedure should be key to a successful outcome. Nevertheless, teeth are incredibly complex structures and it is impossible to get the tooth sufficiently clean for it to be considered completely sterile.

The endodontist needs to carry out everything within their powers to facilitate infection control to reduce the risk of failure. For this reason, placing a rubber dam during treatment is mandatory.

This thin square of latex rubber serves to isolate the tooth from its environment, in particular from bacteria in the oral cavity, permitting a clean, dry operative field and enabling the treatment of the appropriate tooth without contamination from blood or saliva. I actually find that most patients prefer to have a rubber dam in place as a protective barrier. Medico-legally, one of the first questions to be asked following a mishap is whether a rubber dam was used during the procedure, so this device not only protects the tooth and the patient but also the practitioner.

Single-use instruments
The roots of teeth contain very fine, narrow and tortuous channels, some of which can be easily missed or undetected. Despite continuing advances in dental technology, the equipment at the dentist’s disposal is hopelessly inadequate for the job it has been designed to do. Relying on a small, stainless steel file or even super flexible nickel titanium files to successfully clean, shape and decontaminate the nooks and crannies within the tooth is really quite unrealistic.

Nevertheless, they are vital for opening up the canals so that they are accessible to our chemicals for disinfection.
cals such as sodium hypochlo-
rite (bleach), EDTA and iodine to
clean the intricate canal systems.
Bleach is usually the medica-
ment of choice due to its efficacy
against pathogenic organisms
and pulp digestion, and its con-
centration for use varies from 0.5
per cent to 5.25 per cent. At low
concentrations it is bactericidal
whereas at higher concentra-
tions tissue dissolution is im-
proved.

However, some forms of bac-
teria such as enterococcus fae-
calis are resistant to bleach. This
microorganism is commonly de-
tected in teeth with asymptomatic,
persistent endodontic infections
and its prevalence in such infec-
tions ranges from 24 per cent to 77
per cent. Enterococci faecalis are
hardy bacteria able to compete
with other microorganisms, in-
vade dentinal tubules, and resist
nutritional deprivation. Cur-
rently the most effective meth-
ods used to combat these bac-
teria within the root canal
systems of teeth include the use of
good aseptic technique, and
soaking the tooth in iodine for
ten minutes during treatment.

After the root has been suc-
cessfully treated and bacteria
eliminated, the next challenge
that must be overcome is how
to keep bacteria out. Although
the endodontist often will place
a temporary seal after treatment,
the duty of fitting a permanent
restoration with a good coronal
seal usually falls to the GDP.
This will prevent coronal leak-
age, which will inevitably com-
promise the long-term prognosis
of a root canal treated tooth.

This should be done as soon
as possible to protect the tooth
and reduce the chance of frac-
ture. Similarly, if the tooth lacks
sufficient structure to hold the
restoration and a post has to be
placed, the post hole should be
left empty for the minimum time
possible and ideally dressed with
calcium hydroxide.

Indeed, no matter how well
the root is treated, if the coro-
nal seal is poor, the root treated
canal may well fail and the pa-
tient will have to return for fur-
ther treatment. Can it be cleaned?
In short, the clinician needs to
ask themselves two fundamen-
tal questions when considering
Endodontic treatment: Can the
root be cleaned and can we keep
it that way? If the answer to both
questions is yes, then endodon-
tic treatment is a very effective
option to reduce infection and
relieve oral discomfort. With
the help of a well-trained and
efficient nurse who also appre-
ciates the fundamental impor-
tance of cleanliness in Endodon-
tics, the patient can enjoy a very
high success rate and make use
of their natural teeth for many
more years to come.

About the author
Dr Michael Sultan
BDS MSc DFO is
a specialist in En-
dodontics and the
clinical director of
EndoCare. Michael
qualified at Bris-
tol University in
1986. He worked
as a general dental
practitioner for five
years before com-
pleting specialist
studies at Guy’s hospital, London. He
completed his MSc in 1991 and was in Endodon-
tics in 1993 and worked as an in-house
endodontist in various practices before
setting up in Harley St, London in 2000.
He was admitted onto the specialist
register in endodontics in 1999 and has
lectured extensively to postgraduate
dental groups as well as lecturing on
Endodontic courses at Eastman CFD,
University of London. He has been in-
volved with numerous dental groups
and has been chairman of the Alpha
Omega dental fraternity. In 2008, he
became clinical director of EndoCare
a group of specialist practices. To talk
to a member of the EndoCare team call
020 7224 0999 or email reception@end-
care.co.uk or for more information
please visit www.endocare.co.uk.